• AquaSystem
  • BreedingTanks
  • FDA
  • CRISPR/Cas9
  • TechBall
  • pH6
  • ZebrafishHousingSystem
  • FDA-500x500
  • MatingBox-500x500
  • TechBall-500x500
  • CRISPR/Cas9-500x500
  • pH6-500x500

Study of Pluripotency Markers in Zebrafish Embryos and Transient Embryonic Stem Cell Cultures


Center for Regenerative Medicine of Barcelona , Barcelona, Spain.


Targeted genomic manipulation using embryonic stem (ES) cells has not yet been achieved in zebrafish, although methods for zebrafish ES cell culture has been described in literature. The knowledge of pluripotency markers in this species is almost nonexistent and this is a very limiting factor in the definition of the ideal culture conditions for ES cells. Here, we studied the expression of several genes associated with pluripotency in zebrafish embryonic cells versus differentiated cells and the expression of some of these genes is recorded throughout embryonic development. Some of the commonly accepted pluripotency markers are also tested in embryonic cells, transient embryonic cell cultures, and differentiated cells. Our results support the hypothesis that stage-specific embryonic antigen 1 (SSEA1) is a marker that precedes the expression of pluripotency genes in a zebrafish embryonic cell colony, in the same way that SOX2 precedes nestin expression in those colonies that have already started differentiation toward neurons. We consider this study a step forward in the knowledge of zebrafish pluripotency markers and, therefore, an important tool for the monitoring of zebrafish embryonic cell cultures.

[PubMed - indexed for MEDLINE]


Source: NCBI